#SPSS UJI KORELASI (SPSS STATISTICS)

UJI KORELASI

Tujuan : untuk melihat hubungan

Uji korelasi : pearson & spearman

Korelasi pearson :

skala data numeric (interval rasio)

data berdistribusi normal

Korelasi spearman :

Skala data kategorik (nominal ordinal)

Salah satu Data tidak berdistribusi normal (interval rasio)

SOAL 1 :

Melihat hubungan  bb ibu hamil dengan bb bayi lahir

Variable independen : BBIBU (rasio)

Variable dependen : BB bayi lahir (rasio)
LANGKAH :

  1. UJI NORMALITAS

Hipotesis :

H0 : data terdistribusi normal

H1 : data tidak terdistribusi normal

analyze -> non parametric test -> legacy dialog -> one sample KS

One-Sample Kolmogorov-Smirnov Test
bbibu beratbayi
N 103 103
Normal Parametersa,b Mean 35.5920 2663.5198
Std. Deviation 6.18506 374.72656
Most Extreme Differences Absolute .060 .086
Positive .057 .086
Negative -.060 -.048
Kolmogorov-Smirnov Z .605 .877
Asymp. Sig. (2-tailed) .857 .426
a. Test distribution is Normal.
b. Calculated from data.

p-value = 0.857 & 0.426 normal (p-value > 0.05) -> pearson

 

UJI PEARSON

Asusmsi :

skala data numeric (interval rasio)

data berdistribusi normal

Hipotesis :

H0 : tidak ada hubungan

H1 : ada hubungan

Analyze -> correlate -> bivariate -> pearson

Correlations
bbibu beratbayi
bbibu Pearson Correlation 1 .680**
Sig. (2-tailed) .000
N 103 103
beratbayi Pearson Correlation .680** 1
Sig. (2-tailed) .000
N 103 103
**. Correlation is significant at the 0.01 level (2-tailed).

p-value = 0.001 -> H0 ditolak

H1 diterima : ada hubungan antara bb ibu hamil dan bb bayi

Kekuatan hubungan : 0.680 (positif)

Kekuatan hubungan : semakin mendekati +- 1 berarti kuat

  • Lemah : 0 sampai +- 25
  • Sedang : +-26 sampai +- 50
  • kuat : +-51 sampai +-75
  • sangat kuat : > 75

korelasi :

  • positif
  • negatif

 

Soal 2

Melihat hubungan status perokok dengan status bblr

Variable independen = perokok (nominal)

Variable dependen = status bblr (nominal)

Pakai uji korelasi spearman

Correlations
rokok beratbayi
Spearman’s rho rokok Correlation Coefficient 1.000 -.067
Sig. (2-tailed) . .504
N 103 103
beratbayi Correlation Coefficient -.067 1.000
Sig. (2-tailed) .504 .
N 103 103

 

p-value = 0.504 -> H0 diterima tidak ada hubungan

Advertisements

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out / Change )

Twitter picture

You are commenting using your Twitter account. Log Out / Change )

Facebook photo

You are commenting using your Facebook account. Log Out / Change )

Google+ photo

You are commenting using your Google+ account. Log Out / Change )

Connecting to %s